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Recently, we found that the correlation between the eigenvalues of random Hermitian matrices exhib-
its universal behavior. Here we study this universal behavior and develop a diagrammatic approach
which enables us to extend our previous work to the case in which the random matrix evolves in time or
varies as some external parameters vary. We compute the current-current correlation function, discuss
various generalizations, and compare our work with the work of other authors. We study the distribu-
tion of eigenvalues of Hamiltonians consisting of a sum of a deterministic term and a random term. The
correlation between the eigenvalues when the deterministic term is varied is calculated.

PACS number(s): 05.40.+]

I. INTRODUCTION

We have been studying correlations between energy ei-
genvalues in random matrix theory [1-4] in an attempt
to uncover possible universal behavior in disordered sys-
tems. Let us begin by summarizing the main results of
our previous work [5,6]. Consider an ensemble of N XN
Hermitian matrices ¢ defined by the probability distribu-
tion

P(cp)=%e"N27{("’) : (L.1)
with
1
Hp)=: V() (1.2)

for any even polynomial ¥ and with Z fixed by the nor-

malization f dg P(p)=1. Define the Green’s functions
G(z)5<%trz_1_¢>, (1.3)
G(z,w)5<7t]—trz_1(p71v—trwl_¢>, (1.4)
and so forth, where
(0(@))= [dpO(@)P(p) . (1.5)
The density of eigenvalues is then given by
p(u)=<% tr8(,u—¢p)>=_TllmG(u+i6) (1.6)
and the correlation between eigenvalues, by
1063-651X/94/49(4)/2588(9)/$06.00 49

/1 L _
plp,v) <Ntr8(u p) trdly ¢)>

1

4

[G(++)+G(——)

with the obvious notation

G(£,£)=G(utie,vtid) (1.8)

(signs uncorrelated).
In the large N limit, p(u,v)—p(n)p(v), and thus it is
customary to define the connected correlation

plp,v)=p(p,v)—plulplv) . (1.9)

Note that the factors of N are chosen in our definitions
such that the interval [—a,+a] over which p(u) is
nonzero is finite (i.e., of order N°) in the large N limit.

For applications to disordered systems, ¢ is often
thought of as the Hamiltonian. Its eigenvalues then de-
scribe the energy levels of the system. In some applica-
tions, @ is related to the transmission matrix [7]. The
density of and correlation between its eigenvalues tell us
about the conductance fluctuation in disordered metals.

The density of eigenvalues has long been known in the
literature [8] to have the form

p(u)=%P(,u)\/a2—,u2, (1.10)
where P(u) is a polynomial of degree 2p —2 if the poten-
tial V is of degree 2p. The polynomial P(x) and the end
point of the spectrum a depend on V in a complicated
way. In our recent work, we have focused on the correla-
tion between eigenvalues.

We have obtained the following results [5,6], all in the
large N limit.

(1) Using the method of orthogonal polynomials, we
determine
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(L= f(p)f(»] !

a
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X [{cos[@(p)]—cos[@(v)]}(cos{N[h(p)+h(v)]}+cos{N[h(n)—h(v)]})

+ {sin[ ()] —sin[@(v)1}sin{ N[A () +h(v)]} + {sin[@(p)]+sin[@(v)]}sin{ N[A(u)—h(v)]} I?.

The various functions f(u), (), and h(p) are given in
[5] and depend on V. Thus, this rather complicated ex-
pression depends on ¥ in detail.

(2) With u—v close together, of order N ~! times some
number large compared to unity so that there can still be
a finite number of eigenvalues between u and v, and with
both u and v at a finite distance from the end points of
the spectrum, we obtain the universal result

N sin[ 2N Sup(t)]

Kip,v) 27N du ’

(1.12)

where f=1(p—v) and 8u=1(u—v). This means that
the correlation function takes the form

sinx
1 J— —_

2
plu,v)=p(ulp(v) ] ) (1.13)

x =2wNdup() . (1.14)
This result has long been known in the literature. For
(u—v) small, this implies that p(u,v) vanishes as

plp,v)~Lirp(E[N(p—w)1*, (1.15)
as expected from the Van der Monde determinant in the
measure. Note in this context that it is incorrect to re-
place sin’x by its average 4, as is sometimes done in the
literature.

(3) The wild oscillation of p.(u,v) is entirely as expect-
ed since between pu and v finitely separated there are in
general O(N) eigenvalues. Thus, it is natural to smooth
pc(u,v) by integrating over intervals du and 6v large
compared to O(N ~!) but small compared to O(N°) cen-
tered around p and v, respectively. We then obtain [5]

smooth = —1 1 (az_‘uV)
pS (u,v) IN2Z (p—v)? [(a2—p2Na?—v)]2

(1.16)

We find this result rather remarkable since the density
p(u) is completely nonuniversal. The only dependence on
V appears through a.

(4) We have also computed the three- and four-point
connected correlation functions. When the oscillations in
these functions are smoothed over, we found that they
vanish identically to O(N %) and O (N ~*), respectively.
We conjectured that the smoothed p-point connected
correlation function similarly vanishes to O(N ~7).

(5) We can show that the results in paragraphs (1), (2),
and (3) hold for an ensemble much more general than the
one defined in (1.1) and (1.2), namely, an ensemble defined
with

(1.11)

r

1 1
H(¢>)=W TrV(tp)+7v—2 TrW (@) TrW, (@)

1
+FTI‘X1(¢)TI‘X2(¢)TI'X3(¢)+ R (1.17)
with W, X, Y,... arbitrary polynomials. Indeed, it is
easy to see [6] that this ensemble can be further general-
ized by replacing, for example, the third term in (1.13) by

% 3 TrX%(9) TrX$(@) TrX4(p) (1.18)

with X7 a polynomial. This ensemble appears to us to be
the most general ensemble invariant under unitary trans-
formations, i.e.,

P(UToU)=P(¢) , (1.19)

except for some rather singular examples.

(6) Wigner [1] also studied nonunitary ensembles, for
example, an ensemble of matrices ¢ whose matrix ele-
ments take on the value +v/V'N with equal probability.
Using a renormalization group [9] inspired approach, we
can show that p(u) for this class of matrix is universal
and equal to the p(p) for the simple Gaussian ensemble
defined with V(@)=(m?2/2)¢? in (1.2), namely,

p(p,)=%\/a2—,u2 , (1.20)
that is, Wigner’s well-known semicircle law.

(7) In [6] we outline an argument showing that the re-
sults stated in paragraphs (1), (2), (3), and (4) also hold for
the nonunitary ensemble mentioned in paragraph (6).

Some of our results appear to overlap with results ob-
tained in the recent literature [10,11]. In particular, our
smoothed universal connected correlation (1.16) appears
to have been discovered also by Beenakker in an interest-
ing work [11], although we have not yet seen a full
derivation.

Given our correlation functions (1.11), (1.13), and
(1.16), we can proceed to determine the mean square fluc-
tuation of physical quantities such as conductance. For
any quantity A4 (@) defined by the trace of some function
of @, the mean square fluctuation is clearly given by

varA=(A%)—(4 )2=fd,udvpc(,u.,v)A(u)A(v) .
(1.2

We would like to emphasize that it is incorrect to put for
p(i,v) the smoothed correlation

smooth( ’V)oc
P p —vP

given in (1.16). The singularity in p™°®(u,v) as
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pu—v—0 would produce a divergent integral. Within our
discussion, there is of course no difficulty whatsoever,
since pSm°°th(y,v) was derived with the explicit proviso
that p—v is of O(N?) and the true p,(u,v) given in (1.11)
is perfectly smooth as p—v—0. Calculation of the vari-
ance of the conductance given in the recent literature [11]
appears to us to involve simply replacing p, by pSmo°th
without justification.

From the definitions for p(p) and p.(u,v), it is easy to
derive the response of p(y) under a change in the poten-

tial V(v), as pointed out by Beenakker [11]:
8p(p)=—N2[dvp (u,v)8V(v) . (1.22)

smooth 1 1
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Again, it would be tempting to replace [11] p.(u,v) by
psmooth(yy v). However, this illegitimate procedure would
lead to a divergent integral. The variation dp(u)/8V(v)
appears to pose a rather tedious calculation with P and a
in (1.10) depending on ¥V in a complicated way.

We took ¥ to be an even polynomial for simplicity, so
that the density of eigenvalues is a symmetric function
between the end points —a and +a. It is a simple matter
to shift the spectrum. Clearly, if we replace ¢ in V by
¢ —dI (with I the unit matrix and d the shift), the density
of eigenvalues would be nonzero between ¢ = —a +d and
b=a +d. The universal correlation function is then
trivially shifted to read

[—bc+L(b+ec)putv)—puv]

Pe (pv)=—

In Sec. II we will develop a diagrammatic method
which will enable us to study ‘“time”-dependent correla-
tion between the eigenvalues and which, when the time
dependence is suppressed, allows us to recover many of
the results mentioned above. In Sec. III we compute the
current-current correlation function. In Sec. IV we study
a class of Hamiltonians consisting of the sum of a deter-
ministic term and a random term. The correlation be-
tween the eigenvalues when the deterministic term is
varied is calculated.

II. “TIME”-DEPENDENT CORRELATION

In this paper we introduce a diagrammatic method to
study the correlation between eigenvalues for a time-
dependent ensemble of Hermitian matrices with a proba-
bility distribution defined by

2

=Lexp— [T 1lde
Plo)=—exp— [ drTr||ZE | +Vie) . @)

We take T— oo. Here the matrix ¢(¢) depends on time,
or, more generally, on some external parameter we are al-
lowed to vary. Physically, we may apply our results ob-
tained below to disordered systems in which the disorder
may vary. In going from (1.1) to (2.1) we are moving
from zero-dimensional field theory (i.e., an integral) to
one-dimensional field theory (i.e., Euclidean quantum
mechanics). In the language of string theory, we move
from a central charge ¢ =0 theory to a ¢ =1 theory. Asa
byproduct, we show how some of our previous results
mentioned in Sec. I may be recovered as a special case.
For ease of presentation, we will take V(@)=(m?2/2)¢*
to be Gaussian and indicate below how our results may
be generalized.

The one-point Green’s function, or, more generally the
propagator

1

G,-j(z)5< z——<p(t)

> 2.2)
ij

can be readily determined since due to time translation

AN (u—v)? [(b—p)u—c)b—v)(v—c)]'/?

(1.23)

invariance, it does not in fact depend on time. Using the
usual Feynman diagram expansion, we find immediately
that in the large N limit G;(z) is given by planar Feyn-
man diagrams (generalized rainbow) as indicated in Fig.
1(a).

It is perhaps useful, borrowing the terminology of large
N quantum chromodynamics (QCD) from the particle
physics literature, to speak of the single line in Fig. 1(a)

(b)

FIG. 1. (a) Feynman diagram expansion for the Green’s func-
tion G(z). (b) The generalized rainbow equation for the one-
particle-irreducible self-energy 2(z).
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as representing quark propagators and the double lines as
gluon propagators. The quark propagator is given simply
by 1/z while the gluon propagator is given by

‘Dij,kl(t)E <¢ij(t)¢kl(0))
iot 1

_ 1 rdo_e® _
=Budji 7y J 27 wi+m? %k 3N m

—mlt|

e

(2.3)

We will now immediately generalize to arbitrary time
dependence by replacing (2.3) by

o? —u(t)
D'j’kl(t)__—ailajk ‘_ATe . (2.4)

For instance, the time dependence in (2.1) may be
changed in such a way that the “momentum space” prop-
agator w’>+m?in (2.4) is replaced by 1/(0*+y|w|+m?)
or 1/(0*+aw?*+m?), for example. In other words, in
(2.1) we can replace L(dg/dt)* by @K (d /dt)g with K
any reasonable function. Our only requirement is that u
is a smooth function of ¢ and does not blow up as ¢ goes
to zero.

Introducing as usual the one-particle irreducible self-
energy 2;(z), we can write the generalized rainbow in-
tegral equation [Fig. 1(b)]

3(z)=0? =02G(z) . (2.5)

1
z—3(z)
Here we have used the fact, which is immediately obvious
from examining the Feynman diagrams, that 3;(z) is
equal to §;;2(z) and the fact that the gluon propagator
only appears at equal time

1
D,-j,kl(O)ES,-IBjk jv‘a'z .

Note that the quark does not know about time. Solving
the quadratic equation for X, we obtain the Green’s func-
tion as defined in (1.3):
G)=——(z—VZ7—40?) . 2.6)
20
Taking the absorptive part, we recover immediately
Wigner’s semicircle law as given in (1.20).

Incidentally, within this diagrammatic approach, band
matrices can be treated immediately. Let the matrices ¢
be restricted so that @; vanishes unless |i—j| <bN /2
with b <1. Such matrices describe, for example, the hop-
ping of a single electron on a one-dimensional lattice with
random hopping amplitudes. The essential feature is that
from each site the electron can hop to O(1/N) sites.
Looking at the Feynman diagrams, we see that in the
generalized rainbow integral equation we simply restrict
the range of summation from N to bN and thus, instead
of (2.3), we obtain
=bo?G(z) .

S(z)=bo? (2.7

.
z—3(z)

Thus, we have the same distribution of eigenvalues with a
suitable redefinition of the end points.

Let us now move on to the connected two-point
Green’s function

_/1 ! L

Gc(z,w,t)—<N2 tfz_¢,(t) trw—<p(0) )c
s L
< m+'1wn+l

(trg™(t) tre™(0) ) .

(2.8)

Henceforth, for the sake of notational clarity we will set
o to unity; it can always be recovered by dimensional
analysis. Diagrammatically, the expression for G.(z,w,t)
can be described as two separate quark loops, carrying
“momentum” z and w, respectively, interacting by emit-
ting and absorbing gluons [see Fig. 2(a)].

With a Gaussian distribution for ¢, we can readily
“Wick-contract” the expression {trg™(¢)tr¢™(0)). Let
us begin by ignoring contractions within the same trace
(in which case m and n are required to be equal). In the
large N limit, the dominant graphs [see Fig. 2(b)] are
given essentially by “ladder graphs” (with one crossing)
which immediately sum to

1 1

NG (z,w)=
(z,w) )

T (2.9)

We next include Wick contractions within the same
trace in (trp™trp”). We see that graphically these con-
tractions describe vertex and self-energy corrections. The
vertex corrections can be immediately summed: The ex-
pression in (2.9) is to be multiplied by two factors, the
factor

Q
I
™M

(b)

FIG. 2. (a) Feynman diagram expansion for the connected
two-point Green’s function. The dotted lines here represent the
“gluon” propagator. (b) Some typical low order Feynman dia-
grams contributing to the connected two-point Green’s func-
tion.
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7 (2.10)

and a similar factor with z replaced by w. Finally, ac-
cording to our earlier discussion, self-energy corrections
are included immediately by replacing the bare quark
propagator 1/z by the dressed propagator G(z) (and simi-
larly for 1/w, of course.) We obtain finally the remark-
ably compact result

N?G.(z,w)

1
[1-G(2)G(w)]?

GXw)
1—GHw)

G3(z)
1—G%(z)

(2.11)

Finally, we have to put in the time dependence, which
we have ignored so far. We note first of all that the ver-
tex and self-energy corrections contain no time depen-
dence, since there the gluons always begin and end on the
same quark line. Thus, the time-dependent-two-point
connected Green’s function can be written down immedi-
ately as

—u(t)
NG, (z,w,t)= — -
[1—e *YG(2)G(w)]
Gi(z) Giw)
. 2.12
1-Gz) | | 1-G(w) | 212

To obtain the connected correlation function between
energy eigenvalues, we have to take the double absorptive
part of G.(z,w,t) as indicated in (1.7). It is most con-
venient to introduce angular variables: From (2.6) we see
that we may write

Glutie)=—ine' (2.13)
where 7 is equal to the sign of € and

sind=p/a . (2.14)
Similarly, we write

G(v+id)=—ike'?, (2.15)
with £ equal to the sign of & and

sing=v/a . (2.16)

As p and v vary over their allowed ranges, from —a to
+a, 6 and ¢ range vary from —w /2 to 7 /2.
We can now readily compute [in the notation of (1.8)]

cosf cosd

1 1
8N2G (++)= . 2.17
el ) cosfcosd | [1+coshu cos(6+¢)—i sinhu sin(6+¢)] 2.1
Proceeding in this way, we obtain one of our main results:
6N ()= —L l 1+ coshu cos(6+4) | (.o 218

[coshu +cos(8+¢)]?

Note that crossing symmetry (u<>v, t — —t) clearly holds. For ¢t =0, that is, u =0 (since any nonzero u(0) can be ab-
sorbed into o), we recover immediately our previous result (1.16), obtained by the orthogonal polynomial method.
Note that time acts as a regulator for the singularity when p=v: For time not equal to zero, we can set u=v without

difficulty and obtain

R

82N 2p ( )= (2.19)
I 0820 12
For u#v and small time u <<6—¢, we have
—1 60+4¢)
2xr2 _ 1 1 1 3 cos( )
- = - +(p—>—+ 2.20)
16m N e (1) = o cosd | 1+ cos(6+) I Fcoso1g) * |T@— 7o+ (

In the long time limit, ¥ — <o, we find

47 N2p, (1, v)—e ~“tanf tang . (2.21)

As expected, the correlation vanishes exponentially in
time. Notice, however, that a memory of the spatial
correlation is retained even at arbitrarily large time. We
thus conclude that the density-density correlation is
universal in space for all time, in the sense that it does
not depend on V at all.

We note that in the diagrammatic approach used here,
the correlation function is ‘“automatically” smoothed,

r

namely, that we obtain directly the smoothed correlation
in (1.16) rather than the detailed correlation in (1.11) that
we obtained using the orthogonal polynomial method.
An interchange of limits is responsible. Here, in comput-
ing G(z,w), we first take N to infinity and then let z and
w approach the real axis. When N is set to infinity, the
poles of G(z,w) on the real axis corresponding to the in-
dividual eigenvalues merge into a cut, and thus the “short
distance” or the detailed structure of the eigenvalue spec-
trum is smoothed over. In contrast, in our previous
work, we use orthogonal polynomials to calculate p (i, v)
directly without going into the complex plane. In effect,
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we let z and w sit on the real axis before taking N to
infinity and thus the discrete pole structure of the eigen-
value spectrum is visible.

In this context we may also mention that in the recent
literature on the subject, particularly in the work of
Altshculer and collaborators that we will cite below, the
focus is on the short distance behavior of the correlation
function, that is to say, the behavior of the correlation
function in the regime specified for (1.12) and (1.13). The
diagrammatic approach allows us to study the long dis-
tance regime specified for (1.16). The orthogonal polyno-
mial method, however, tells us about the correlation over
all distance scales. In this sense, the orthogonal polyno-
mial method is more powerful and informative.

Having analyzed the Gaussian case, we now discuss
how our results could hold more generally. We distin-
guish between the “trace class” defined in (1.1) and the
“Wigner class” defined in (6).

For the Wigner class, let us focus on the example in
which the probability of the distribution matrix element
@;; is given by

~Nlg; P~ w?/M)P?

P(g;)=e : 2.22)

corresponding essentially to the example mentioned in
item (6) in Sec. I (see [6]). The quartic interaction
~N 2|<P,-j|4 would contribute to Feynman diagrams such
as the one in Fig. 3(a). Counting powers, we see that this
graph is of order N *NN?=N""! and so is suppressed
relative to the graphs in Fig. 1(a). Reasoning along this
line, we see immediately that the distribution of eigenval-
ues is universal, a long-known result that we also derived
recently using a renormalization group inspired approach
[6]. As a bonus, we obtain immediately in the present di-
agrammatic approach that the correlation function is also
universal. (Incidentally, this result is not at all easy to
obtain with the renormalization group approach of [6].)

(b)

FIG. 3. Non-Gaussian corrections to the propagator in (a)
the Wigner class and (b) the trace class.
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For the trace class, the interaction, for example, the
quartic term in V(¢), would generate Feynman diagrams
such as the one in Fig. 3(b). Counting powers of N, we
see that this graph is in no way suppressed relative to the
graphs in Fig. 1(a). This is in fact a gratifying conclusion
as we know from [8] [see Eq. (1.10)] that in the trace
class, in sharp contrast to the Wigner class, the distribu-
tion of eigenvalues is in fact not universal. It appears to
us that within the diagrammatic approach, it would be
rather involved to demonstrate the universality of the
correlation function for the trace class, namely, the result
we obtained in [5] using the method of orthogonal poly-
nomials. We would have to show that the effects of the
arbitrary polynomial interactions contained in ¥V in (1.1)
can be summed up and absorbed completely in the end
point value a of the spectrum. We find it remarkable that
in this subject results easily obtained in one approach are
apparently rather difficult to prove in another.

III. CURRENT-CURRENT CORRELATIONS

As is well known, the ensemble in (1.1) may be thought
of as describing the statistical mechanics of a gas in 1+0
dimensional space time. The partition function

Z=fd¢)e-—NtrV(<p)
=C [dA, - dhy

Xexp | =N IV(A)+ 3 In(A,—A;)*|, (3.1

i<j

where C is an irrelevant overall constant. The logarith-
mic term comes from the well-known Jacobian connect-
ing dg to dAdA,...dAy. Regarding A; as the position
of the “ith particle” on the real line, we see that (3.1) de-
scribes a one-dimensional gas of N particles interacting
with each other via a logarithmic repulsion while
confined by an external potential ¥(A). Intuitively then,
it becomes entirely clear that the density of the gas p(u)
has no reason to be universal: It should certainly depend
on V. It s less clear why the change in density 8p(u) at u
due to a change in the potential ¥ (v) at v should be
universal, and indeed, this universality holds only when
we smooth over the discrete character of the gas.

The generalization in (2.1) then corresponds to allow-
ing the particles to move in a 1+ 1-dimensional space
time. With the density operator defined by

p(,u,t)=—11\7 Solu—a(0], (3.2)
we clearly have the conservation law
S A _
31 + o o, (3.3)
with the current operator defined by
Fun =L 5 02,00 (3.4)
un,t)= N ; dt Hu (1)) . .

Thus, we are led to study the current-current correlation
function
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(J(, ) (v,0))

az ’ v ’ ’
= *yfidu f_adv (plp',t)p(v',0))¢ . (3.5
Note that (JJ ) is connected by definition.
The double integral in (3.5) may be explicitly evalu-
ated. We find that in effect p_ (1, v) may be written as

coshu +cos(6+¢)

Jd 0
__4 272 , =
TN (V) coshu —cos(6—¢)

.

(3.6)
In particular, at equal time, we have

—47*N%p, (u,v)

=iiln a’—puv+Via*—p*)a’—+?)
ou dv a2~,uv—\/(a2—,u2)(az-v2)
(3.7a)
An equivalent form reads
21 N2p, (1, v)
172 172
a—p a—v
3 9 atpu atv
= 6—5:/—1n 172 172 . (3.7b)
H a—p | L |azv
atu atv

The current-current correlation function then follows im-
mediately:

82

n coshu +cos(60+¢)
ot?

272 —
4m*N*{J (u, 1) (v,0)) coshu —cos(6—g)

_ sinhu i
coshu +cos(6+¢)

[1+coshu cos(60+¢)] 02
[coshu +cos(68+¢)]?

—(¢——d+7) . (3.8)

We have thus obtained the current-current correlation
function for arbitrary separation in space and time.
First, the dependence on space is universal: as a function
of 0 and ¢, the current-current correlation, just like the
density-density correlation from which it is derived, does
not depend on the potential V.

The dependence on time, in contrast, is nonuniversal:
Clearly, the dependence of u on ¢ enters. In special cases,
however, the specific functional form may be seen to drop
out. From (3.8), we see that at the same point in space,
that is, when 6=¢, and u small, we have

2
2w2N2(J(u,z)J(v,0)>=§t—21nu TR (3.9)

Thus, if as t —0, u vanishes as u —at?, then
2NHIT ) ——y /t* . (3.10)

We have universality in the sense that the unknown con-

stant a has dropped out. With the further assumption
that ¥ =1, which is reasonable but certainly not required,
we obtain the universal statement

2WNHJT ) —>—1/t%. (3.1

We also observe the curiosity that at 6=¢==17/2, the
current-current correlation vanishes identically for all
time.

For large time, we obtain

TN (J (1, 2)J (v,0) ) —cosO cosd(1 2 —iiJe ~* . (3.12)

This is, of course, not independent of (2.19).

We have learned that the universality of (JJ ) at small
time has already been derived by Szafer and Altschuler
[12] and by Beenakker [13] using apparently rather
different methods and implicitly assuming that y =1. To
our knowledge, the complete form of (JJ) in (3.8) has
not appeared before in the literature.

We can immediately generalize the preceding discus-
sion to the case where many external parameters ¢,
ty, ...t ... are varied. This may be described pic-
turesquely as a many-time world in which the conserva-
tion laws

J* _3p

o ar (3.13)

hold where the current with respect to time ¢, is defined
by
X 0A;
JH )= —08[u—A(1)] .
oty

i

(3.14)

The relation (3.5) immediately generalizes to
(T¥, )T '(v,0))
== [" ap [7 dv{pw,t)p(+,0))c, (.19

where 3*=9/dt,. For the special case where u is a func-
tion of t=(3t#)!/2, for example, we obtain easily that
tt
2a72( 7k I Kkl
j
J

for small time, with an assumption similar to the one that
leads to (3.11).

(3.16)

IV. DETERMINISTIC PLUS RANDOM

Our diagrammatic approach allows us to study im-
mediately the eigenvalues of a Hamiltonian of the form
H=H,+¢@ which consists of the sum of a deterministic
piece H, and a random piece ¢ with a probability distri-
bution such as in (1.1). Pastur [14] has found the interest-
ing relation that

G(2)=Gy(z—G(2)) , 4.1)

where G and G, are the Green’s functions for H and H,
respectively. We now show that Pastur’s relation follows
immediately from our diagrammatic analysis.

Let us consider the Gaussian case and let H, be diago-
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nal with diagonal elements €;. Looking at the relevant
Feynman diagrams, we see that we simply have to replace
the inverse quark propagator z by z —¢; and thus obtain

=G(z) . (4.2)

=1 1
22)= N % z—€,—2(2)

We recognize this as (4.1). The relation (4.1), while in-
terestingly compact, is not terribly useful in practice as in
solving for G (z) one would encounter a polynomial equa-
tion of degree N + 1.

We will now demonstrate the power of the diagram-
matic approach by showing how we can immediately go
beyond Pastur’s relation and study correlation. Consider
the following class of physical problems: Suppose we
change some external parameters so that the determinis-
tic Hamiltonian H,, is changed to H;. We would like to
compute the correlation between the spectra of H and
H'=H+g; in other words, we would like to compute

1 1 1 1
’ aH' =(t -t ’
G (z,w,Hy,Hy) <N rz-Ho-cp N rw—H(,—cp)c

(4.3)

where the average, as before, is over the distribution of ¢.

An example of this class of problems was recently stud-
ied by Simons and Altschuler [15]. They considered the
problem of a single noninteracting electron moving in a
ring threaded by a magnetic flux and with the electron
scattering on impurities in the ring. The magnetic flux is
then changed to some other value with H changed ac-
cordingly to H’'. The correlation between the spectra of
H and H' is apparently of great interest in the physics of
mesoscopic systems.

We see immediately from Fig. 2(b) that using the di-
agrammatic approach we can determine G (z,w,H,,H)
quite readily. Let us define

1

z—e,—2(z) ’ “4

8i(2)=

where 2(z) is the solution of (4.2). We assume that H is
also diagonal, with diagonal elements €;. We define the
analog of g;(z) for H, namely,

1

B ————— 4.5
w—e; —2'(w) 45

h,(w)z

where 2'(w) is the solution of the analog of (4.2) for Hy,
namely, (4.2) with €, —€}, z—w, and 2(z)—='(w). Let
us also introduce the shorthand notation

=1 <,2
88=~ Zi)g; ,
4.6)

and so forth. Then,
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g2 h*(1—g-h)+(g*h)(g-h?)

NG, (z,w,H,,H}y)=
C(Z w 0 0) (1—g-h)2

1 1
x l1—g-g 1—hh ~

We see that this collapses to (2.11) when Hy=H,=0.

The number of physical situations covered by the re-
sult of this section is very large. In particular, it should
allow us to verify the intuitive expectations concerning
the universality of the correlations: The general belief is
that if the energy scale is such that the system can ex-
plore the full extent of the disorder, one should recover
the correlations for the pure random matrix correlations,
irrespective of the nonrandom H,,. It is far from obvious
from the explicit representation (4.7). Clearly, our result
(4.7) could also be used to study questions such as locali-
zations, or the influence of white noise in various physical
situations. Thus, we believe that the result in (4.7) would
prove to be of importance in studying many disordered
systems.

Note added in proof. Recently, C. W. J. Beenakker
[Nucl. Phys. (to be published)] and B. Eynard [Nucl.
Phys. (to be published)] have given alternative derivations
of the universality in (1.16). The conjecture mentioned
under (4) in Sec. I has been verified by Eynard.
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APPENDIX

We have focused on random Hermitian matrices. In
some physical situations, the Hamiltonian matrix is in
fact real symmetric. It is well known in the literature
(see, for example, [7]) that, going from the case of Hermi-
tian random matrices to the case of real symmetric ma-
trices, we simply insert in various formulas appropriate
factors of 2. This is most easily seen by looking at (3.1):
for @ real symmetric matrices we would have a factor of
4 in front of the logarithmic repulsion. This comes about
because the Jacobian connecting dg to dAdA,...dAy
for the Hermitian case is the positive square root of the
corresponding Jacobian for the real symmetric case.

Let us now sketch exceedingly briefly how this factor
of 2 emerges in the diagrammatic approach. Typically,
we encounter {trg"trg”). To indicate how the argument
goes, let us consider only Wick contractions between the
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two traces. After the first contraction, we have
n{@;@ap) {(@" ™ 1);i(@" "Ny
n(8;08;5+8;g8;0)< (@" 1) (@" ")y )
=288, (@} P ') -

The last line follows from the fact that ¢ is symmetric.
Proceeding, we find easily that the above is equal to
2nN". Note that for Hermitian matrices the expression

(A1)

E. BREZIN AND A. ZEE 49

in the parentheses would reach §,,8,5 instead, and this
accounts for the factor of 2 alluded to above.

Graphically, the fact that (cp,-jcpaﬁ) is equal to
8481 8gd o rather than §,,8;5 means that the double
lines in the gluon propagator in the Feynman diagrams
can be twisted. The direct counting of graphs becomes
considerably more involved. We also note that the
method of orthogonal polynomials used in [5] becomes
rather complicated when we deal with real symmetric
matrices.
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FIG. 1. (a) Feynman diagram expansion for the Green’s func-
tion G(z). (b) The generalized rainbow equation for the one-
particle-irreducible self-energy 2(z).



